Copied to
clipboard

G = M4(2).25C23order 128 = 27

7th non-split extension by M4(2) of C23 acting via C23/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: M4(2).25C23, C4○D4.49D4, (C2×C4).5C24, Q8(C4.D4), D4(C4.10D4), Q8○M4(2)⋊12C2, C4.135(C22×D4), (C22×Q8).15C4, D4.18(C22⋊C4), (C2×D4).356C23, Q8.18(C22⋊C4), C22.18(C23×C4), C23.98(C22×C4), (C2×Q8).329C23, (C22×C4).274C23, C4.D4.12C22, C4.10D4.9C22, (C2×2- 1+4).4C2, (C22×Q8).256C22, (C2×M4(2)).242C22, M4(2).8C2219C2, (C2×C4○D4).12C4, (C2×C4).444(C2×D4), C4.32(C2×C22⋊C4), (C2×D4).225(C2×C4), (C22×C4).39(C2×C4), (C2×Q8).203(C2×C4), C22.5(C2×C22⋊C4), (C2×C4.10D4)⋊28C2, (C2×C4).109(C22×C4), (C2×C4○D4).83C22, C2.32(C22×C22⋊C4), SmallGroup(128,1621)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — M4(2).25C23
C1C2C4C2×C4C22×C4C2×C4○D4C2×2- 1+4 — M4(2).25C23
C1C2C22 — M4(2).25C23
C1C2C2×C4○D4 — M4(2).25C23
C1C2C2C2×C4 — M4(2).25C23

Generators and relations for M4(2).25C23
 G = < a,b,c,d,e | a8=b2=d2=e2=1, c2=a2b, bab=a5, cac-1=ab, ad=da, ae=ea, cbc-1=a4b, bd=db, be=eb, cd=dc, ce=ec, ede=a4d >

Subgroups: 548 in 352 conjugacy classes, 170 normal (9 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C2×C8, M4(2), M4(2), C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C4○D4, C4.D4, C4.10D4, C2×M4(2), C8○D4, C22×Q8, C2×C4○D4, C2×C4○D4, 2- 1+4, C2×C4.10D4, M4(2).8C22, Q8○M4(2), C2×2- 1+4, M4(2).25C23
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C24, C2×C22⋊C4, C23×C4, C22×D4, C22×C22⋊C4, M4(2).25C23

Smallest permutation representation of M4(2).25C23
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 6)(4 8)(9 13)(11 15)(18 22)(20 24)(26 30)(28 32)
(1 15 3 13 5 11 7 9)(2 12 8 14 6 16 4 10)(17 26 19 32 21 30 23 28)(18 31 24 25 22 27 20 29)
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 30)(10 31)(11 32)(12 25)(13 26)(14 27)(15 28)(16 29)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 18)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 17)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(26,30)(28,32), (1,15,3,13,5,11,7,9)(2,12,8,14,6,16,4,10)(17,26,19,32,21,30,23,28)(18,31,24,25,22,27,20,29), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(26,30)(28,32), (1,15,3,13,5,11,7,9)(2,12,8,14,6,16,4,10)(17,26,19,32,21,30,23,28)(18,31,24,25,22,27,20,29), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,6),(4,8),(9,13),(11,15),(18,22),(20,24),(26,30),(28,32)], [(1,15,3,13,5,11,7,9),(2,12,8,14,6,16,4,10),(17,26,19,32,21,30,23,28),(18,31,24,25,22,27,20,29)], [(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,30),(10,31),(11,32),(12,25),(13,26),(14,27),(15,28),(16,29)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,18),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,17)]])

41 conjugacy classes

class 1 2A2B···2H2I2J4A···4H4I···4N8A···8P
order122···2224···44···48···8
size112···2442···24···44···4

41 irreducible representations

dim111111128
type++++++-
imageC1C2C2C2C2C4C4D4M4(2).25C23
kernelM4(2).25C23C2×C4.10D4M4(2).8C22Q8○M4(2)C2×2- 1+4C22×Q8C2×C4○D4C4○D4C1
# reps1662141281

Matrix representation of M4(2).25C23 in GL8(𝔽17)

22890009
22980090
89220900
98229000
0000151598
0004151589
0000981515
0400891515
,
10000000
01000000
00100000
00010000
1529916000
2159901600
9915200160
9921500016
,
1529915000
2159901500
9915200150
9921500015
000021588
100015288
000088215
001088152
,
04000000
130000000
000130000
00400000
900150400
082013000
028000013
150090040
,
00100000
00010000
10000000
01000000
00000010
00000001
00001000
00000100

G:=sub<GL(8,GF(17))| [2,2,8,9,0,0,0,0,2,2,9,8,0,0,0,4,8,9,2,2,0,0,0,0,9,8,2,2,0,4,0,0,0,0,0,9,15,15,9,8,0,0,9,0,15,15,8,9,0,9,0,0,9,8,15,15,9,0,0,0,8,9,15,15],[1,0,0,0,15,2,9,9,0,1,0,0,2,15,9,9,0,0,1,0,9,9,15,2,0,0,0,1,9,9,2,15,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[15,2,9,9,0,1,0,0,2,15,9,9,0,0,0,0,9,9,15,2,0,0,0,1,9,9,2,15,0,0,0,0,15,0,0,0,2,15,8,8,0,15,0,0,15,2,8,8,0,0,15,0,8,8,2,15,0,0,0,15,8,8,15,2],[0,13,0,0,9,0,0,15,4,0,0,0,0,8,2,0,0,0,0,4,0,2,8,0,0,0,13,0,15,0,0,9,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,13,0],[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0] >;

M4(2).25C23 in GAP, Magma, Sage, TeX

M_4(2)._{25}C_2^3
% in TeX

G:=Group("M4(2).25C2^3");
// GroupNames label

G:=SmallGroup(128,1621);
// by ID

G=gap.SmallGroup(128,1621);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,456,521,2804,2028,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^8=b^2=d^2=e^2=1,c^2=a^2*b,b*a*b=a^5,c*a*c^-1=a*b,a*d=d*a,a*e=e*a,c*b*c^-1=a^4*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=a^4*d>;
// generators/relations

׿
×
𝔽